• Granja et al. (2021). ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis DOI: 10.1038/s41588-021-00790-6
  • Cusanovich et al. (2018). Cell. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility DOI: 10.1016/j.cell.2018.06.052
  • Mulqueen et al. (2018). Nature Biotechnology. Highly scalable generation of DNA methylation profiles in single cells DOI: 10.1038/nbt.4112
  • Luo et al. (2017). Science (New York, N.Y.). Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex DOI: 10.1126/science.aan3351
  • Angermueller et al. (2017). Genome Biol. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning DOI: 10.1186/s13059-017-1189-z
  • Zhu et al. (2017). Cell Stem Cell. Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution DOI: 10.1016/j.stem.2017.02.013
  • Macaulay et al. (2017). Trends Genet. Single-Cell Multiomics: Multiple Measurements from Single Cells DOI: 10.1016/j.tig.2016.12.003
  • Litzenburger et al. (2017). Genome Biol. Single-cell epigenomic variability reveals functional cancer heterogeneity DOI: 10.1186/s13059-016-1133-7
  • Ramani et al. (2017). Nat. Methods. Massively multiplex single-cell Hi-C DOI: 10.1038/nmeth.4155
  • Corces et al. (2016). Nat. Genet. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution DOI: 10.1038/ng.3646
  • Bock et al. (2016). Trends Biotechnol. Multi-Omics of Single Cells: Strategies and Applications DOI: 10.1016/j.tibtech.2016.04.004
  • Cheow et al. (2016). Nat. Methods. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity DOI: 10.1038/nmeth.3961
  • Gravina et al. (2016). Genome Biol. Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome DOI: 10.1186/s13059-016-1011-3
  • Hu et al. (2016). Genome Biol. Simultaneous profiling of transcriptome and DNA methylome from a single cell DOI: 10.1186/s13059-016-0950-z
  • Clark et al. (2016). Genome Biol. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity DOI: 10.1186/s13059-016-0944-x
  • Angermueller et al. (2016). Nat. Methods. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity DOI: 10.1038/nmeth.3728
  • Hou et al. (2016). Cell Res. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas DOI: 10.1038/cr.2016.23
  • Bintu et al. (2016). Science. Dynamics of epigenetic regulation at the single-cell level DOI: 10.1126/science.aab2956
  • Qu et al. (2016). Sci. Rep. Assessing Cell-to-Cell DNA Methylation Variability on Individual Long Reads DOI: 10.1038/srep21317
  • Jin et al. (2015). Nature. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples DOI: 10.1038/nature15740
  • Rotem et al. (2015). Nat. Biotechnol. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state DOI: 10.1038/nbt.3383
  • Schwartzman and Tanay (2015). Nat. Rev. Genet. Single-cell epigenomics: techniques and emerging applications DOI: 10.1038/nrg3980
  • Kind et al. (2015). Cell. Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells DOI: 10.1016/j.cell.2015.08.040
  • Buenrostro et al. (2015). Nature. Single-cell chromatin accessibility reveals principles of regulatory variation DOI: 10.1038/nature14590
  • Cusanovich et al. (2015). Science. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing DOI: 10.1126/science.aab1601
  • Macaulay et al. (2015). Nat. Methods. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes DOI: 10.1038/nmeth.3370
  • Farlik et al. (2015). Cell Reports. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics DOI: 10.1016/j.celrep.2015.02.001
  • Greenleaf (2015). Methods. Assaying the epigenome in limited numbers of cells DOI: 10.1016/j.ymeth.2014.10.010
  • Wills et al. (2015). Epigenomics. Studying epigenomics in single cells: what is feasible and what can we learn? DOI: 10.2217/epi.15.93
  • Swanton and Beck (2014). Cancer Cell. Epigenetic noise fuels cancer evolution DOI: 10.1016/j.ccell.2014.11.003
  • Smallwood et al. (2014). Nat. Methods. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity DOI: 10.1038/nmeth.3035
  • Guo et al. (2013). Genome Res. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing DOI: 10.1101/gr.161679.113
  • Burton et al. (2013). Cell Reports. Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo DOI: 10.1016/j.celrep.2013.09.044
  • Lorthongpanich et al. (2013). Science. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos DOI: 10.1126/science.1240617
  • Stevens et al. (2013). Genome Res. Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods DOI: 10.1101/gr.152231.112
  • Kind et al. (2013). Cell. Single-Cell Dynamics of Genome-Nuclear Lamina Interactions DOI: 10.1016/j.cell.2013.02.028
  • Khanna et al. (2013). Nat. Methods. EpiGnome [trade] Methyl-Seq Kit: a novel post-bisulfite conversion library prep method for methylation analysis
  • Miura et al. (2012). Nucleic Acids Res. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging DOI: 10.1093/nar/gks454
  • Adey et al. (2010). Genome Biol. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition DOI: 10.1186/gb-2010-11-12-r119